- Advertisement -
Thursday, June 8, 2023
Home Technology for Function Biodegradable silk from plastic waste

Biodegradable silk from plastic waste

Researchers at Rensselaer Polytechnic Institute in Troy, NY, found that a microorganism that digests common petroleum-based plastic waste and yields a biodegradable plastic alternative signifies a new solution to an on-going problem.

With aid of a substantial new National Science Foundation grant of 0.5 million dollars for the project, a team of engineers from Rensselaer Polytechnic Institute will discover this potentially transformative idea entitled Microbial Upcycling of Petrochemical Polymer Waste into High Value Protein-Based Polymers for a Circular Economy.

Biodegradable-Silk-from-plastic-waste
Figure: Graduate student Alex Connor in a lab at RPI’s Center for Biotechnology and Interdisciplinary Studies. Courtesy: RPI

“We have all of this plastic pollution in the environment that comes from all of this plastic that we use daily, most of which is based on petroleum feedstocks, which are based on molecules that can’t degrade naturally in the environment,” says Helen Zha, an assistant Professor Of Chemical and Biological Engineering at Rensselaer, who is heading this research project.

Zha and her collaborators will discover if a genetically engineered bacteria would be capable of breaking down petroleum-based plastic waste that could then be used as energy to produce artificial silk, a biodegradable protein that acts much like traditional plastic.

Provided over two years, the NSF grant will allow RPI to demonstrate proof-of-concept on a small scale.

“The grand-funded research began in September, though we performed some preliminary studies earlier this year,” Zha says.

“We’re now at the bench-top level and are working towards pilot scale-up,” she adds.

“However, there may be potential for developing a continuous process in the future, in conjunction with other research occurring in our lab,” Zha points out.

“We also hope to explore pilot production at 20 to 30-Liter scales within the project timeframe.”

“The use of metabolic engineering approaches for plastic waste degradation and its conversion to higher-value chemicals such as biopolymers is an underexplored area of research,” says Mattheos Koffas, a professor of chemical and biological engineering. He has previously established several microbially-based processes and now joins Zha in this research. “Our collaborative effort will provide more sustainable and environmentally friendly methods and materials.”

According to Zha, a barrier to using silk as a replacement for traditional plastic is that it’s hard to produce from nature in large quantities. Designing and creating a new bacterium that can manufacture artificial silk could be a valuable solution.

“Our research develops genetically modified bacteria capable of producing recombinant silk protein by metabolizing waste plastic,” Zha explains. “At some point, we as a society should be transitioning to using plastics that not only come from nonpetroleum-based sources but can also completely degrade into something that goes into the natural environment.”

If you’re familiar with the term GMO, this is a similar process.

The research is presently focused on polyethylene, which Zha calls a “major source of global plastic waste. However, our technology also has the potential to be compatible with other common plastics.”

There are various potential end markets for artificial silk.

“While textiles are one possibility, other interests include replacements for single-use plastics such as packaging and wraps or materials for biomedical applications,” says Zha. “While some of the materials produced may replace silk, the project intends to develop a microbial system that can produce silk materials with tunable properties that may suit a diverse range of applications.”

“How to optimize the molecular architecture and microstructure of artificial silk is a fascinating design problem that nature has perfected over hundreds of millions of years, yet we have just started to piece clues together,” says Yunfeng Shi, an associate professor of materials science and engineering, and another grant collaborator.

This unique challenge requires a cross-disciplinary approach, bringing engineers together from across departments.

“This forward-thinking, innovative idea is exactly the type of environmentally friendly and sustainable solution CBIS faculty are focused on developing,” says Deepak Vashishth, the director of the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer, of which Zha and Koffas are members.

The RPI team is also partnering with Guohong Mao, the associate director of Conagen, a biosynthesis and biomanufacturing company. It seems a natural choice; according to the company’s website, “Conagen innovates and develops synthetic biology solutions for supporting global partners across a spectrum of current and developing markets. Our bio-manufacturing capabilities, coupled with extensive platforms of enzymes and microorganisms, gives us the edge in commercial biotechnology. Nature is our inspiration for designing metabolic pathways, improving production organisms, and optimizing production processes.”

Related News

Functional Fashion Issue 04 week 10

 Download now  

Boohoo launches first pop-up shop in London to showcase new arrivals

Fashion retailer Boohoo has announced the opening of its very first pop-up store in Central London on Great Portland Street. The store opened on March...

Sweden and Indian researchers create new technology to purify tainted water

Researchers from Malaviya National Institute of Technology, Jaipur in India and Chalmers University of Technology in Sweden have created a new technique that quickly...

NC State separates mixed cotton from polyester by using enzymes in US

A team at North Carolina State University (NC State) has developed an enzyme-based method for separating mixed cotton and polyester fabric in the US....

H&M donates books and dressmaker mannequins to CIEOSH and BUFT

H&M Group, a multinational clothing giant, contributed books and dressmaker mannequins to the BGMEA Centre of Innovation, Efficiency and Occupational Safety and Health (CIEOSH)...

More like this

Functional Fashion Issue 04 week 10

0
 Download now  
Boohoo launches first pop-up shop in London to showcase new arrivals

Boohoo launches first pop-up shop in London to showcase new arrivals

0
Fashion retailer Boohoo has announced the opening of its very first pop-up store in Central London on Great Portland Street. The store opened on March...
Sweden and Indian researchers create new technology to purify tainted water

Sweden and Indian researchers create new technology to purify tainted water

0
Researchers from Malaviya National Institute of Technology, Jaipur in India and Chalmers University of Technology in Sweden have created a new technique that quickly...
Blended cotton polyester

NC State separates mixed cotton from polyester by using enzymes in US

0
A team at North Carolina State University (NC State) has developed an enzyme-based method for separating mixed cotton and polyester fabric in the US....
H&M donates books and dressmaker mannequins to CIEOSH and BUFT

H&M donates books and dressmaker mannequins to CIEOSH and BUFT

0
H&M Group, a multinational clothing giant, contributed books and dressmaker mannequins to the BGMEA Centre of Innovation, Efficiency and Occupational Safety and Health (CIEOSH)...
- Advertisement -